Enhanced Production of Biomass and Lipids by Supplying CO₂ in Marine Microalga *Dunaliella* sp.

Hancheol Jeon¹, Yew Lee¹, Kwang Suk Chang¹, Choul-Gyun Lee², and EonSeon Jin^{1*}

¹Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea ²Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea

(Received May 6, 2013 / Accepted July 17, 2013)

Non-food-based biofuel feedstocks are in high demand worldwide. Among the various feedstocks, microalgae are the most promising feedstock for mitigating atmospheric CO₂ and producing biodiesel. In this study, various concentrations of CO₂, from 0.03 to 12%, were used to investigate their effect on the cell growth, biomass and lipid production and fatty acid composition of Dunaliella sp. in a closed photobioreactor. The results showed that the highest biomass and total lipids, 521 mg/L/d and 40 mg/L/d, respectively, were produced with 5% CO₂ aeration during the logarithmic growth phase. The oleic acid (18:1n9c) and elaidic acid (18:1n9t) contents were increased approximately two fold. The physiological responses of Dunaliella sp. at 10% CO₂ were similar to those at 5% CO₂. Therefore, the present results suggest that 5-10% is a suitable CO₂ concentration range for Dunaliella sp. growth to mitigate atmospheric CO₂ and increase biofuel production.

Keywords: carbon dioxide, photobioreactor, CO₂ sequestration, *Dunaliella*, biodiesel

Introduction

Recently, algae have emerged as a third-generation feedstock for biodiesel and hydrocarbon production (Scott *et al.*, 2010; Wijffels and Barbosa, 2010). Photosynthetic organisms fix CO_2 and produce O_2 , and the organic materials that form biomass can be used for biodiesel production via transesterification (Shay, 1993; Lestari *et al.*, 2009). Therefore, these organisms, which mitigate atmospheric CO_2 , can be utilized for the production of alternative energy. Microalgal lipids are an appropriate candidate for biodiesel feedstock because their fatty acid composition is similar to that of vegetable oils (Posten and Schaub, 2009). In general, microalgal lipid accumulation is induced and biomass productivity is reduced under stress conditions. The production of biomass and lipids by microalgae is influenced by various environmental factors, such as temperature and the concentrations of atmospheric CO_2 and salt (Sosik and Mitchell, 1994; Fu *et al.*, 2007). Therefore, one of the important characteristics desired in a feedstock for biodiesel production is high biomass productivity with enhanced lipid productivity.

Dunaliella sp., one of the microalgae most studied under laboratory and mass culture conditions, is a unicellular green alga that thrives in hyper-saline environments, enabling largescale outdoor cultivation without contamination (Borowitzka, 1981). Dunaliella sp. also has a high tolerance to high temperature and high light conditions, so it is relatively easy to cultivate. To investigate the potential application of Dunaliella for biodiesel production, various studies have been performed. One of the important factors that affect biomass and lipid productivity is the concentration of carbon dioxide in closed photobioreactors. Using CO₂ as a carbon source significantly enhances biomass productivity. However, excessive CO2 retards the growth of Dunaliella. For this reason, enhanced growth, even at high concentrations of CO₂, is required for the direct use of the CO₂-rich gas emitted by power plants or industrial exhausts in which the CO₂ concentration is 15%.

In the present study, we investigated the effect of the CO_2 concentration (0.03–12% v/v) on the production of biomass and lipids by the marine microalga *Dunaliella* sp. in a closed photobioreactor. To find the best culture condition for enhancing microalgal carbon fixation and biofuel production, the cell growth, the amounts of biomass and lipids produced, and the fatty acid profile were investigated under each CO_2 aeration condition.

Materials and Methods

Strain, medium, and culture

The green microalga *Dunaliella* sp. was originally isolated by Mordhay Avron (Park *et al.*, 2006). This microorganism was formerly named *D. salina*, but a recent molecular phylogenetic re-characterization showed that it is similar to *D. tertiolecta* (Kim *et al.*, 2010). The *Dunaliella* sp. cells were cultured in D medium with 1.0 M NaCl at 23°C. D medium [40 mM Tris-HCl (pH 7.4), 5 mM KNO₃, 4.5 mM MgCl₂. $6H_2O$, 0.5 mM MgSO₄·7H₂O, 0.3 mM CaCl₂, 0.1 mM K₂HPO₄, 2 µM FeCl₃, 20 µM EDTA, and 1 ml (per L) of micronutrient solution] is modified artificial seawater (Pick *et al.*, 1986). The micronutrient solution is composed of 50 mM H₃BO₃, 10 mM MnCl₂·4H₂O, 0.8 mM ZnSO₄·7H₂O, 0.4 mM CuSO₄·5H₂O, 2 mM NaMoO₄·2H₂O, 0.2 mM CoCl₂·6H₂O, and 1.5 mM NaVO₃.

^{*}For correspondence. E-mail: esjin@hanyang.ac.kr; Tel.: +82-2-2220-2561; Fax: +82-2-2299-2561

Cultivation of microalgae in a photobioreactor with CO_2 aeration

Dunaliella sp. cultures were grown in a 400-ml bubble column photobioreactor (40 mm in diameter and 500 mm in height) illuminated with 120 µmol photons/m²/s of light with a 12:12 light/dark cycle. This culture was aerated with various concentrations of CO₂, ranging from 0.03 to 12% at a feed velocity of 80 ml/min. The initial cell concentration for each condition was 1.0×10^6 cells/ml.

Growth curve and biomass

The cell growth was determined from cell numbers, and the biomass was determined from dry weight. The cells were counted using a Neubauer hemocytometer (Marienfeld, Germany) and a light microscope (CX21, Olympus Imaging Corp., Japan). To estimate the dry weight of *Dunaliella* sp., 5 ml of microalgal culture was filtered through a mixed cellulose ester membrane (Advantec, Japan). The membrane was dried in an electric oven at 65°C for 24 h and then weighed.

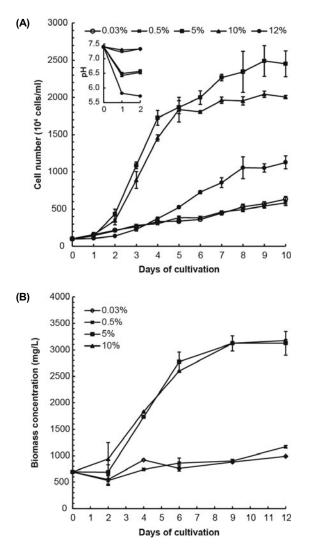


Fig. 1. Cell growth (A) and biomass production (B) in *Dunaliella* sp. cultures aerated with different concentrations of CO₂. The inset shows the changes in pH of cultures aerated with different concentrations of CO₂.

Extraction of total microalgal lipids

Lipid extraction from *Dunaliella* sp. was performed using the method adapted from Bligh and Dyer (1959). Lipids were extracted from the algal cells using methanol, chloroform, and water. Ten milliliters of culture were harvested by centrifugation at 2,000×g for 10 min. The pellets were suspended with 4 ml of dH_2O . After that, 10 ml of methanol and 5 ml of chloroform were added in sequence. After an overnight incubation in a shaker at room temperature, 5 ml of water and 5 ml of chloroform were added. The samples were centrifuged for 10 min at 2,000×g to obtain two layers. The lipidcontaining lower layer of chloroform was removed by pipetting and placed in a pre-weighed aluminum dish. The chloroform was evaporated by heating on a hot plate. After evaporation, the dish was weighed again. The difference between the weight before and after evaporation was recorded as the weight of the microalgal lipids from the cultured sample.

Fatty acid methyl ester (FAME) analysis

For gas chromatography of the fatty acid methyl esters of *Dunaliella* sp., the samples were freeze-dried and weighed. Two milliliters of a mixture of acetyl chloride and methanol at the ratio of 5:100 (v/v) were added to the samples. As an internal standard, one mg of tricosanoic acid was also added. Under pure nitrogen and dark conditions, the reagents were incubated at 100°C for 1 h in a Teflon-capped Pyrex container, and then cooled to $30-40^{\circ}$ C. Next, 1 ml of the hexane was added, and the solution was mixed by vortexing for 30 sec. For purification, the solution was salted out by adding 1 ml of saturated NaCl solution, which caused the formation of two separated liquid phases, and then the upper phase was transferred to another tube. The hexanic phase was dried under anhydrous Na₂SO₄ and injected into an HP 6890 gas chromatograph (Hewlett-Packard, USA).

Results and Discussion

Growth and biomass production of *Dunaliella* sp. in a photobioreactor

To investigate the effect of the CO₂ concentration on the growth of Dunaliella sp., cultured cells were incubated at 23°C under 120 µmol/m²/s of light and aerated with different CO₂ concentrations. Interestingly, the maximal algal concentration $(2.5 \times 10^7 \text{ cells/ml})$ was observed on day 9 with 5% CO₂. In addition, 5% and 10% CO₂-aerated cultures exhibited similar growth patterns. In contrast, low concentrations (0.03% and 0.5%) of CO_2 had little effect on the microalgal growth compared to the high concentrations (5% and 10%) of CO₂. The tolerance of microalgae against CO₂ concentration is varied, however. Chlorella and Spirulina showed optical growth in the range of 5–10% CO₂ concentration (Kumar et al., 2010). Cell growth was significantly inhibited by 12% CO₂ aeration. This effect may have been due to the high concentration of CO₂ reducing the pH of the medium (Mercado et al., 1999). A pH value lower than that of the optimal culture condition inhibits microalgal growth (Kim *et al.*, 2012). With 12% CO_2 aeration, the low pH of

	Dunaliella sp. based FAME composition (%)			
	0.03% CO ₂	0.5% CO ₂	5% CO ₂	10% CO ₂
C14:0	1.81 ± 0.44	1.20 ± 0.22	0.66 ± 0.02	0.42 ± 0.21
C14:1	0.88 ± 0.03	0.78 ± 0.07	0.38 ± 0.03	0.39 ± 0.01
C16:0	20.71 ± 0.37	21.30 ± 0.44	24.34 ± 0.07	23.39 ± 0.23
C16:1	1.74 ± 0.18	2.08 ± 0.30	1.28 ± 0.36	1.97 ± 0.19
C18:0	20.81 ± 0.52	20.85 ± 0.64	18.28 ± 0.28	18.36 ± 0.12
C18:1n9c	2.32 ± 0.10	2.17 ± 0.10	9.14 ± 0.10	8.98 ± 0.09
C18:1n9t	5.67 ± 0.27	5.51 ± 0.42	7.39 ± 0.55	7.92 ± 0.11
C18:3	46.05 ± 0.22	46.11 ± 0.31	38.52 ± 0.27	38.57 ± 0.34
∑saturated FAME	43.33 ± 0.54	43.35 ± 0.49	43.28 ± 0.27	42.17 ± 0.54
∑unsaturated FAME	56.67 ± 0.54	56.65 ± 0.49	56.72 ± 0.27	57.83 ± 0.54
Maximum biomass productivity (mg/L/d)	52.50 ± 12.50	82.50 ± 2.50	521.25 ± 13.75	415.00 ± 95.00
Maximum total lipid productivity (mg/L/d)	6.25 ± 3.75	6.25 ± 1.25	40.00 ± 7.50	35.00 ± 2.50

Table 1. Fatty acid methyl ester (FAME) composition and productivity of maximum biomass and lipid of *Dunaliella* sp. cultured with various concentration of CO₂. Data indicates the Means±SE.

the medium may have inhibited cell growth.

In a previous study, D. tertiolecta showed the highest growth rate in the range of 2–6% CO₂ aeration, but the growth rate was remarkably reduced by 10% CO2 aeration (Suzuki et al., 1995; Tang et al., 2011). Other studies on D. salina and Dunaliella sp. demonstrated that the optimum CO₂ concentrations at 27°C were 3.0% and 1.0% CO₂ aeration, respectively (Kim et al., 2012). In this study, Dunaliella sp. exhibited high growth and high biomass production with 10% CO₂ (Fig. 1). The differences in growth capacity at the high CO₂ concentrations found in several studies, including our present study, might be due to the species used and variations in the parameters of the growth conditions, such as the light intensity, the temperature, the bioreactor used and the feed velocity of CO₂. For these reasons, many scientists are interested in mutant microalgae that tolerate low pH and exhibit a high growth rate with a high concentration of CO₂ in the culture. A mutant *Chlorella* that tolerated high CO2 conditions was identified, but its growth rate was slow (Chang and Yang, 2003). However, Dunaliella sp., which was used in this study, showed the highest growth in 5% CO₂ aerated cultures and exhibited enhanced growth, even with 10% CO2 aeration. Therefore, Dunaliella sp. might have a much higher tolerance of low pH and a greater ability to utilize CO₂ than other species.

The Dunaliella sp. biomass was determined from the dry weight. During cultivation with 5% or 10% CO₂, the biomass of Dunaliella sp. dramatically increased (to 3.12 g/L), which correlated with the increase in the number of cells (Fig. 1A and 1B). The cells grown at a 10% CO₂ concentration grew slightly slower than the cells grown at a 5% CO₂ concentration. This implies that the biomass of the cells grown at a 10% CO₂ concentration is higher than that of the cells grown at a 5% CO₂ concentration. Indeed, the cells grown at a 10% CO₂ concentration were larger than the cells grown at a 5% CO₂ concentration (data not shown). As biomass production is a function of the biomass concentration and culturing period (Fig. 1B), biomass productivity is calculated based on increased amount of biomass during unit period. The maximum biomass productivity was calculated from the data during exponential periods of culture (from 2 to 6 days of culture periods), therefore, the maximum biomass productivities for 5% CO₂ and 10% CO₂ were presented as 521 mg/L/day and 415 mg/L/day, respectively (Table 1). However,

at other CO_2 concentrations, the biomass barely increased (Fig. 1B). These results demonstrate that the 5% and 10% CO_2 culture conditions are appropriate for growing *Dunaliella* sp. In addition, the maximal biomass (with 5% and 10% CO_2 aeration) was similar to that of *Chlorella* or *Nannochloropsis*, which are known to be robust, industrial fresh-water algae (Griffiths and Harrison, 2009). To our knowledge, *Dunaliella* sp. has achieved the highest biomass production among *Dunaliella* species.

Effect of the CO₂ concentration on the total lipid concentration at different growth stages

The microalgal cells were harvested at different stages of growth to measure the amount of total lipid present. The results revealed that lipid production was also affected by the CO₂ concentration of the culture. Total lipid production was dramatically increased with 5% CO₂ and 10% CO₂ aeration. The maximal lipid productivity was 40.0 mg/day under the 5% CO₂ condition (Table 1). This result indicated that the 5% and 10% CO₂ culture conditions enhanced the production of both lipids and biomass by *Dunaliella* sp.

According to our study, the maximal lipid concentration (315 mg/L) was not much higher than that reported in other studies (Griffiths and Harrison, 2009). In addition, the lipid

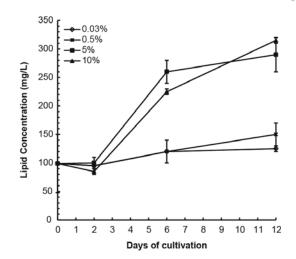


Fig. 2. Lipid production in *Dunaliella* sp. cultures aerated with different concentrations of CO₂.

content attained under the 5% and 10% CO₂ conditions were also slightly lower than those attained with lower CO₂ concentrations (Fig. 2). For example, the lipid content on day 6 under 0.03% and 0.5% CO₂ conditions was 16.10±3.90% and 14.23±1.99%, respectively. Under 5% and 10% CO2 conditions, the lipid content decreased to 9.37±0.04% and 8.65± 0.19%, respectively. Although the lipid content per cell had decreased, the total lipid concentration had increased because of the dramatic increase in the cell number. The lipid content of microalgae is an important consideration for biodiesel production, but currently, lipid and biomass productivity are also regarded as important key indicators of biodiesel production (Griffiths and Harrison, 2009). The most well-known microalga with high lipid content is Botryococcus braunii, which accumulates lipids to approximately 70% of the biomass. However, its doubling time is 5 to 7 days. Therefore, its lipid productivity is lower than those of other candidate species (Banerjee et al., 2002). In this respect, the enhanced biomass and lipid productivity of *Dunaliella* sp. in response to high CO₂ aeration suggests that *Dunaliella* sp. has the high potential to become a feedstock for biodiesel production.

Fatty acid methyl ester (FAME) analysis

The microalgal fatty acid composition was determined using gas chromatography. The common fatty acids of biodiesel are palmitic, stearic, oleic, and linolenic acids (Knothe, 2008). In this study, the fatty acid profile included C14:0, C14:1, C16:0, C16:1, C18:0, C18:1n9c, C18:1n9t, and C18:3. The main component was linolenic acid, followed by palmitic acid and stearic acid. Interestingly, with high CO₂ aeration (5% and 10% CO₂), the contents of oleic acid (18:1n9c) and elaidic acid (18:1n9t) were increased two fold (Table 1). Although the high content of unsaturated fatty acids (such as, C18:3) may impart poor oxidative stability to the total lipids, the enhanced biomass and lipid productivity that results from CO₂ aeration may make *Dunaliella* sp. a good candidate for biodiesel production.

Conclusion

The effects of CO_2 aeration on the growth and the lipid production of *Dunaliella* sp. were investigated with respect to its potential application in biodiesel production. This microalga can tolerate high concentrations of CO_2 (5% and 10% CO_2). Moreover, the biomass production and the lipid production of *Dunaliella* sp. were both enhanced by high CO_2 aeration. Based on these results, the high growth and the increased biomass and lipid productivity of *Dunaliella* sp. obtained from aeration with a high concentration of CO_2 deem *Dunaliella* sp. a potential candidate for carbon capturing and biodiesel production.

Acknowledgements

This research was supported by a grant from Marine Biotechnology Program and the Mass Cultivation of Marine Microalgae and Process Development of Bio-diesel Production project funded by Ministry of Land, Transport and Maritime Affairs of Korean Government.

References

- Banerjee, A., Sharma, R., Chisti, Y., and Banerjee, U.C. 2002. *Botry*ococcus braunii: a renewable source of hydrocarbons and other chemicals. *Crit. Rev. Biotechnol.* **22**, 245–279.
- Bligh, E.G. and Dyer, W.J. 1959. A rapid method of total lipid extraction and purification. *Can. J. Biochem. Physiol.* 37, 911–917.
- Borowitzka, L.J. 1981. The microflora adaptations to life in extremely saline lakes. *Hydrobiologia* **81**, 33–46.
- Chang, E.H. and Yang, S.S. 2003. Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. *Bot. Bull. Acad. Sin.* 44, 43–52.
- Fu, F.X., Warner, M.E., Zhang, Y., Feng, Y., and Hutchins, D.A. 2007. Effects of increased temperature and CO₂ on photosynthesis, growth, and elemental ratios in marine *Synechococcus* and *Prochlorococcus* (cyanobacteria). *J. Phycol.* **43**, 485–496.
- **Griffiths, M. and Harrison, S.** 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. *J. Appl. Phycol.* **21**, 493–507.
- Kim, W., Park, J., Gim, G., Jeong, S.H., Kang, C., Kim, D.J., and Kim, S.W. 2012. Optimization of culture conditions and comparison of biomass productivity of three green algae. *Bioprocess Biosyst. Eng.* 35, 19–27.
- Kim, M., Park, S., Polle, J.E.W., and Jin, E. 2010. Gene expression profiling of *Dunaliella* sp. acclimated to different salinities. *Phy*col. Res. 58, 17–28.
- Knothe, G. 2008. "Designer" biodiesel: Optimizing fatty ester composition to improve fuel properties. *Energy Fuels* 22, 1358–1364.
- Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F.X., and van Langenhove, H. 2010. Enhanced CO₂ fixation and biofuel production via microalgae: recent developments and future directions. *Trends Biotechnol.* 28, 371–380.
- Lestari, S., Päivi, M.A., Beltramini, J., Lu, G.Q., and Murzin, D.Y. 2009. Transforming triglycerides and fatty acids into biofuels. *ChemSusChem.* 2, 1109–1119.
- Mercado, J., Javier, F., Gordillo, L., Xavier Niell, F., and Figueroa, F. 1999. Effects of different levels of CO₂ on photosynthesis and cell components of the red alga *Porphyra leucosticta*. J. Appl. Phycol. 11, 455–461.
- Park, S., Polle, J., Melis, A., Lee, T., and Jin, E. 2006. Up-regulation of photoprotection and *PSII*-repair gene expression by irradiance in the unicellular green alga *Dunaliella salina*. *Mar. Biotechnol.* 8, 120–128.
- Pick, U., Karni, L., and Avron, M. 1986. Determination of ion content and ion fluxes in the halotolerant alga *Dunaliella salina*. *Plant Physiol.* 81, 92–96.
- Posten, C. and Schaub, G. 2009. Microalgae and terrestrial biomass as source for fuels - a process view. J. Biotechnol. 142, 64–69.
- Scott, S.A., Davey, M.P., Dennis, J.S., Horst, I., Howe, C.J., Lea-Smith, D.J., and Smith, A.G. 2010. Biodiesel from algae: challenges and prospects. *Curr. Opin. Biotechnol.* 21, 277–286.
- Shay, E.G. 1993. Diesel fuel from vegetable oils: status and opportunities. Biomass Bioenergy 4, 227–242.
- Sosik, H.M. and Mitchell, B.G. 1994. Effects of temperature on growth, light absorption, and quantum yield in *Dunaliella tertiolecta* (chlorophyceae). J. Phycol. **30**, 833–840.
- Suzuki, T., Matsuo, T., Ohtaguchi, K., and Koide, K. 1995. Gassparged bioreactors for CO₂ fixation by *Dunaliella tertiolecta*. J. *Chem. Technol. Biotechnol.* **62**, 351–358.
- Tang, H., Abunasser, N., Garcia, M.E.D., Chen, M., Simon, Ng, K.Y., and Salley, S.O. 2011. Potential of microalgae oil from *Dunaliella tertiolecta* as a feedstock for biodiesel. *Appl. Energy* 88, 3324–3330.
- Wijffels, R.H. and Barbosa, M.J. 2010. An outlook on microalgal biofuels. Science 329, 796–799.